A categori

By Bernstein J.

Show description

Read or Download A categori
cation of the Temperley-Lieb algebra and Schur quotients of U(sl2) via projective and Zuckerman functors PDF

Best algebra books

Polynomes, etude algebrique - download pdf or read online

Les polynômes permettent de résumer les calculs de base sur les nombres : somme, produit, élévation à une puissance entière. C'est los angeles raison pour laquelle ils se sont si tôt introduits comme outils naturels des mathématiques. Formellement, ils sont utilisés comme des schémas universels pour ces calculs, puisque, par substitution, ils permettent de réaliser tout calcul concret à partir de manipulation abstraite.

Read e-book online Enveloping algebras PDF

This e-book, that's the 1st systematic exposition of the algebraic method of representations of Lie teams through representations of (or modules over) the corresponding common enveloping algebras, grew to become out to be so good written that even at the present time it is still one of many major textbooks and reference books at the topic.

Extra resources for A categori
cation of the Temperley-Lieb algebra and Schur quotients of U(sl2) via projective and Zuckerman functors

Sample text

Proof. 1 for a proof of a slightly more general statement. An alternative proof that we give below uses Vol. 5 (1999) Categorification of Temperley-Lieb algebra 235 i Lemma 4. The functor τi+1 τii+1 restricted to Oik,n−k is isomorphic to the identity functor. Proof. We first study this functor as a projective functor from the subregular block Oµi to itself. We will show that this functor is a direct sum of the identity functor and another projective functor that vanishes when restricted to Oik,n−k .

Math. Phys. 127 (1990), 1–26. G. Turaev. Quantum Invariants of Knots and 3-Manifolds. De Gruyter Studies in Mathematics 18 (1994). V. Zelevinski. Small resolutions of singularities of Schubert varieties. Funktional. Anal. and Appl. 17 (1983), 75–77. Vol. 5 (1999) [Zu] Categorification of Temperley-Lieb algebra 241 G. Zuckerman. Tensor products of finite and infinite dimensional representations of semisimple Lie groups. Ann. of Math. 106 (1977), 295–308. M.

Beilinson and V. Ginzburg. Wall-Crossing functors and D-modules, Preprint alggeom/9709022. A. Beilinson, V. Ginzburg and W. Soergel. Koszul duality patterns in representation theory. Journal of the AMS 9 (1996), 473–527. N. M. I. Gelfand. Category of g-modules. Functional Anal. and Appl. 10 (1976), 87–92. N. I. Gelfand. Tensor products of finite and infinite dimensional representations of semisimple Lie algebras. Compositio Math. 41 (1980), 245–285. S. Carter and M. Saito. Reidemeister moves for surface isotopies and their interpretation as moves to movies.

Download PDF sample

A categori
cation of the Temperley-Lieb algebra and Schur quotients of U(sl2) via projective and Zuckerman functors by Bernstein J.


by George
4.5

Rated 4.52 of 5 – based on 13 votes